Generalization of the Kolmogorov -5/3 law of turbulence

J. Qian

Department of Physics, Graduate School of Academia Sinica, P.O. Box 3908, Beijing 100039, China (Received 7 February 1994)

When the energy transfer function Π is a power-law function of the wave number k, $\Pi \subset k^{\alpha}$, the spectral dynamic equation of isotropic turbulence has a power-law solution, and the energy spectrum is $E(k) = C(\alpha)\Pi^{2/3}k^{-5/3}$, which is a generalization of the Kolmogorov -5/3 law $E(k) = K_0 \epsilon^{2/3}k^{-5/3}$. The Kolmogorov law corresponds to the special case of $\alpha = 0$ and $\Pi = \epsilon$. Here $C(\alpha)$ is a dimensionless coefficient and depends upon the exponent α , $K_0 = C(0)$ is the Kolmogorov constant, and ϵ is the energy dissipation rate. $C(\alpha)$ is evaluated by numerically solving the spectral dynamic equation.

PACS number(s): 47.27.Ak

The energy spectrum E(k) of an isotropic turbulence satisfies the following spectral form of the von Kármán-Howarth equation [1]:

$$dE(k)/dt + 2\nu k^2 E(k) = T(k)$$

Here dE(k)/dt denotes the derivative of E(k) with respect to time t, k is the wave number, v is the kinematic viscosity, and T(k) is the energy transfer spectrum function of the triad interaction between modes of turbulence. The energy transfer function $\Pi = \Pi(k) = \int_{k}^{\infty} T(k') dk'$ is the net rate of energy transfer from the wave numbers below k to those above. If Π is a constant independent of k and equals the energy dissipation rate ϵ , we have

$$E(k) = K_0 \epsilon^{2/3} k^{-5/3} , \qquad (1)$$

which is the celebrated Kolmogorov -5/3 law, K_0 being the Kolmogorov constant. The Kolmogorov -5/3 law (1) is a consequence of scaling properties of the hydrodynamic equation [2], and can be derived from the Navier-Stokes equation by statistical closure methods. The scaling properties imply that $E(k) \propto k^{\gamma}$ is a possible statistical solution of the Navier-Stokes equation even if γ takes a value other than $-\frac{5}{3}$. This possibility is explored here. $\Pi(k)$ =const, a premise of the Kolmogorov -5/3 law, is a special case of the following more general expression of Π :

$$\Pi = \Pi(k) = \Pi_1 k^{\alpha} . \tag{2}$$

Here Π_1 is a constant independent of k. This paper proves that if the energy transfer function Π is given by

(2), then the energy spectrum

$$E(k) = C(\alpha) \Pi^{2/3} k^{-5/3} , \qquad (3)$$

so $E(k) \propto k^{-5/3+2\alpha/3}$. Here $C(\alpha)$ is a dimensionless coefficient and depends upon the exponent α . Equation (3) is called the generalized -5/3 law and becomes the Kolmogorov law (1) when $\alpha=0$, $\Pi=\Pi_1=\epsilon$, and $C(0)=K_0$. Readers who are not interested in the derivation of (3) can skip the next two mathematical paragraphs.

Various statistical closure methods of the Navier-Stokes equation [3-5] yield the following expression for the energy transfer function Π :

$$\Pi = \int_{k}^{\infty} dk' \int_{0}^{k} dp \int_{\max(p,k'-p)}^{p+k'} dr \, S(k'|p,r) , \qquad (4a)$$

$$S(k|p,r) = 16\pi^2 k^3 pr[b(k,p,r)d(r,p,k)]$$

$$+b(k,r,p)d(p,r,k)]/\eta(k,p,r)$$
,

(4b)

$$d(r,p,k)=q(r)[q(p)-q(k)], q(k)=E(k)/4\pi k^2,$$
(4c)

$$\eta(k,p,r) = \eta(k) + \eta(p) + \eta(r) . \tag{4d}$$

Here $\eta(k)$ is the dynamic damping coefficient and b(k,p,r) is a geometrical factor. Different closure methods give $\eta(k)$ quite different meanings. If we treated $\eta(k)$ as an optimal control parameter to minimize the approximation which is made during the derivation of (4), we would obtain

$$q(k)\eta(k) = 2\pi \int_0^\infty dp \int_{\max(p,k-p)}^{p+k} dr \, kpr\{f(k,p,r) + f(k,r,p) + b^*(k,p,r)d(k,r,p)[\eta(p) - \eta(r)]\} / \eta(k,p,r)^2 , \qquad (5a)$$

$$f(k,p,r) = b(k,p,r)d(r,k,p)[2\eta(p) + \eta(r)],$$
 (5b)

which is called the $\eta(k)$ equation [5]. The geometrical factors b(k,p,r) and $b^*(k,p,r)$ are defined as follows:

$$b(k,p,r)=(p/k)(xy+z^3)$$
, $b^*(k,p,r)=(pr/k^2)(yz+x^3)$,

where x, y, and z are the cosines of three angles of the triangle with sides k, p, and r.

When the energy transfer function Π is given by (2), Eqs. (4) and (5) have a power-law solution,

$$q(k) = Ak^m, \quad \eta(k) = Bk^n. \tag{6}$$

Substituting (6) into (4) and (5), we obtain a set of algebraic equations for determining A, m, B, and n. Let k' = k/u, p = vk', and r = wk'; after some manipulation, from (2), (4), and (6) we obtain

$$8+2m-n=\alpha , (7)$$

$$\Pi_1 = 16\pi^2 [A^2/B]I_1(m,n,\alpha)$$
, (8a)

$$I_{1}(m,n,\alpha) = \int_{0}^{1} dv (v^{1-\alpha} - v) / \alpha \int_{\max(v,1-v)}^{1+v} dw \ w[b(1,v,w)w^{m}(v^{m}-1) + b(1,w,v)v^{m}(w^{m}-1)] / [1 + v^{n} + w^{n}] \ . \tag{8b}$$

Similarly, if we let p = vk and r = wk, from (5) and (6) we obtain

$$5+m-2n=0$$
, (9)

$$B^2/A = 2\pi I_2(m,n)$$
, (10a)

$$I_{2}(m,n) = \int_{0}^{\infty} dv \ v \int_{\max(v,1-v)}^{1+v} dw \ w[b(1,v,w)w^{m}(1-v^{m})(2v^{n}+w^{n})+b(1,w,v)v^{m}(1-w^{m})(2w^{n}+v^{n})$$

$$+b*(1,v,w)(w^m-v^m)(v^n-w^n)]/[1+v^n+w^n]^2$$
. (10b)

From (7) and (9) we have

$$m = -\frac{11}{2} + 2\alpha/3$$
, $n = \frac{2}{3} + \alpha/3$. (11)

Instead of A and B, we use the dimensionless coefficients

$$C = 4\pi A / \Pi_1^{2/3}, \quad D = B / \Pi_1^{1/3}.$$
 (12)

Then, Eqs. (8a) and (10a) become

$$D/C^2 = I_1(-\frac{11}{2} + 2\alpha/3, \frac{2}{2} + \alpha/3, \alpha)$$
, (13a)

$$D^2/C = I_2(-\frac{11}{3} + 2\alpha/3, \frac{2}{3} + \alpha/3)/2$$
 (13b)

When α is given, $I_1(-\frac{11}{3}+2\alpha/3, \frac{2}{3}+\alpha/3, \alpha)$ and $I_2(-\frac{11}{3}+2\alpha/3, \frac{2}{3}+\alpha/3)$ can be evaluated by using (8b) and (10b). Then, from (13) we determine the dimensionless coefficients C and D. Obviously C is a function of α , i.e., $C=C(\alpha)$. The change of the ratio $C(\alpha)/K_0$ with α is given in Fig. 1, and $K_0=C(0)$. From Eqs. (2), (6), (11), and (12), we have

$$E(k) = 4\pi k^2 q(k) = 4\pi A k^{m+2} = C[\Pi_1 k^{\alpha}]^{2/3} k^{-5/3}$$
$$= C \Pi^{2/3} k^{-5/3},$$

which is exactly the generalized -5/3 law (3).

In summary, when the energy transfer function Π is given by (2), the spectral dynamic equations have a power-law solution, and the energy spectrum E(k) is expressed by (3), which is a generalization of the Kolmogorov -5/3 law. The Kolmogorov law (1) is just a special case of (3), corresponding to $\alpha=0$, $\Pi=\epsilon$, and $K_0=C(0)$. Figure 1 shows the change of $C(\alpha)/K_0$ with α .

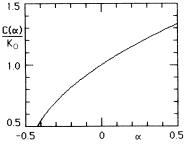


FIG. 1. $C(\alpha)/K_0$ vs α .

The above derivation of the generalized -5/3 law (3) is based upon a particular closure method. Actually, (3) can also be derived by other closure methods capable of deriving the Kolmogorov -5/3 law from the Navier-Stokes equation. Various closure methods [3-5] yield the same expression for the energy transfer function Π , but have different forms of the η equation (or response equations). If a closure method is capable of deriving the Kolmogorov -5/3 law, its closed spectral dynamic equations have a power-law solution (6). Then, its energy equation leads to (7) and its η (or response) equation leads to (9); hence we obtain the generalized -5/3 law (3). Of course, different closure methods have different forms of the function $I_2(m,n)$ corresponding to different forms of the η (or response) equation. Consequently, this might predict different values of the dimensionless coefficient $C(\alpha)$. The issue over which closure method is better has no effect upon the validity of the generalized -5/3 law (3) and will not be discussed here.

One might ask why and where the exponent α of (2) is different from zero. Before discussing the problem, it should be noticed that the energy transfer function Π approaches zero as $k \to 0$ or $k \to \infty$; hence, it is not realistic to model $\Pi = \Pi(k)$ by a power function of k for the whole wave number range of a real turbulent flow. However, it is possible to use (2) as a simple model of Π in some limited range. For example, the Kolmogorov model $\Pi = \text{const} = \epsilon(\alpha = 0)$ is routinely used over a limited inertial range of real turbulent flows. In the inertial range, the viscous term $2\nu k^2 E(k)$ is neglected, the spectral dynamical equation becomes dE(k)/dt = T(k), and

$$\Pi = \int_{k}^{\infty} T(k')dk' = \int_{k}^{\infty} [dE(k')/dt]dk' + \text{const}$$
(k in inertial range). (14)

In an absolutely stationary turbulence dE(k)/dt = 0, Π becomes a constant independent of k, the α of (2) is zero, and the Kolmogorov -5/3 law (1) is valid. When the macrostructure of a high Reynolds number turbulence is changing spatially and temporally, $dE(k)/dt \neq 0$, by (14) Π is no longer a constant in the inertial range. In this case, as pointed out by Lumley [6], the energy flux at the low wave number end of the inertial-range spectral pipeline is not equal to the energy flux at the high wave num-

ber end. When the macrostructure is changing spatially and temporally, the physical fact of Π changing with k in the inertial range should be taken into account in turbulence modeling [6]. In the inertial range of a decaying homogeneous turbulence, dE(k)/dt is negative and by (14) Π increases with k; hence (2) with a positive α is a better model than Π =const. In the inertial range of a developing turbulence, initially only large scales are excited, then smaller and smaller scales are excited step by step, dE(k)/dt is positive, by (14) Π decreases with k, and hence (2) with a negative α is a better model than Π =const. Although the macrostructure of a turbulence is changing, E(k)/[dE(k)/dt] is still greater than the relaxation time of modal triad interactions in the inertial range, so the spectral dynamic equations (4) and (5) are still valid. The quasistationarity condition implies that $|\alpha|$ is not large. When $|\alpha| < 0.5$, the deviation of the exponent $-5/3+2\alpha/3$ of the energy spectrum (3) from the exponent -5/3 of (1) is less than 20%, which is not easy to be observed over a quite limited wave-number range. However, according to Fig. 1, the corresponding relative change in $C(\alpha)$ may be higher than 30%, which might be one of the reasons why the experimental values of the Kolmogorov constant are widely scattered.

Of course, $dE(k)/dt \neq 0$ is not the unique physical situation where (2) is a better model than $\Pi = \text{const.}$ In numerical simulations or some experiments [7], a quite narrow inertial range is observed around 0.1 k_d . Here k_d is the Kolmogorov wave number. In the narrow range around 0.1 k_d , the viscous term $2vk^2E(k)$ is positive, $\Pi = 2v \int_{k}^{\infty} k'^2E(k')dk'$ decreases with k even if we assume dE(k)/dt = 0, and (2) with a negative α is a better

model than Π =const. In short, the Kolmogorov model Π =const= ϵ is the simplest inertial-range model, and is a special case (α =0) of (2), which represents an improvement over Π =const to take into account the long-range effect of the viscous term as well as the nonstationarity effect. We should notice that the exponent α of (2) is not a universal constant; its value depends upon the wavenumber range to be studied and how the macrostructure of a turbulent flow is changing, spatially and temporally.

It is well known [1] that the intermittency of turbulence may lead to inertial-range energy spectrum to deviate from the Kolmogorov -5/3 law (1). The main purpose of this paper is to prove the generalized -5/3 law (3). It is not intended to give any contribution to the intermittency problem. According to (3), the deviation of the energy spectrum from the Kolmogorov -5/3 law might be a result of the wave-number dependence of the energy transfer function Π , in addition to the intermittency effect. The Kolmogorov -5/3 law (1) is a consequence of two premises, the premise of self-similarity of small scales (or the premise of global scaling [2]) and the premise of constant Π [$\Pi(k) = \text{const} = \epsilon$]. The selfsimilarity premise implies $E(k) \propto k^{\gamma}$ while the premise of constant Π specifies $\gamma = -5/3$ and selects the Kolmogorov -5/3 law. One interesting problem is the question over what will happen if the first premise (self-similarity or global scaling) is not valid, which is the subject of various intermittency models such as the local multifractal scaling model [2]. Another interesting problem is the question over what will happen if the second premise (constant Π) is not valid, which is studied here, and the generalized -5/3 law (3) is derived.

^[1] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics of Turbulence (MIT, London, 1975).

^[2] U. Frisch, Proc. R. Soc. London Ser. A 434, 89 (1991).

^[3] R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959); Phys. Fluids 9, 1728 (1966).

^[4] D. C. Leslie, Developments in the Theory of Turbulence

⁽Clarendon, Oxford, 1983).

^[5] J. Qian, Phys. Fluids 26, 2098 (1983); 27, 2229 (1984).

^[6] J. L. Lumley, Phys. Fluids A 4, 203 (1992).

^[7] J. R. Chasnov, Phys. Fluids A 3, 188 (1991), and references therein.